energy_fault_detector.anomaly_scores.mahalanobis_score
- class MahalanobisScore(pca=True, pca_min_var=0.9, mcd_support_fraction=0.9, scale=False)
Bases:
AnomalyScoreCalculate mahalanobis scores using sklearn MinCovDet und optionally a PCA to accelerate calculations.
- Parameters:
pca (
bool) – boolean to indicate whether PCA should be done before determining the covariance. Default true.pca_min_var (
float) – parameter for PCA, variance to keep. Default 0.9mcd_support_fraction (
float) – parameter for Minimum Covariance Determinant estimation. Default 0.9scale (
bool) – If True, std of the training/fit reconstruction errors will be used to scale recon errors before applying MinCovDet. Default: False
Configuration example:
train: anomaly_score: name: mahalanobis params: pca: True pca_min_var: 0.9 mcd_support_fraction: 0.9 scale: False- fit(x, y=None)
Fit MinCovDet object to determine Mahalanobis distance.
- Parameters:
x (
Union[DataFrame,ndarray]) – numpy 2d array or pandas DataFrame with differences between prediction and actual sensor values.y (optional) – not used, labels indicating whether sample is normal (True) or anomalous (False).
- Return type:
- transform(x)
Calculate Mahalanobis distance from x.
- Parameters:
x (
Union[DataFrame,ndarray]) – numpy 2d array or pandas Dataframe with differences between prediction and actual sensor values- Return type:
Series- Returns:
Mahalanobis distance for each sample. Output is a pandas Series if input was a pandas DataFrame