energy_fault_detector.threshold_selectors.fdr_threshold
- class FDRSelector(target_false_discovery_rate=0.2)
Bases:
ThresholdSelectorFind a threshold given a target false discovery rate (FDR).
- Parameters:
target_false_discovery_rate (float) – The target FDR to fit the threshold to. Defaults to 0.2.
- threshold
Scores above the threshold are classified as anomalies, while scores below are classified as normal.
- Type:
- actual_false_discovery_rate_
The actual FDR (the nearest threshold to the target) after fitting.
- Type:
Example Configuration:
train: threshold_selector: name: FDRSelector params: target_false_discovery_rate: 0.2- fit(x, y=None)
Finds a threshold given the specified false discovery rate.
- Parameters:
x (Array1D) – Array with calculated anomaly scores.
y (pd.Series, optional) – Labels indicating whether each sample is normal (True) or anomalous (False). Required for FDR threshold calculation.
- Returns:
The instance of this class after fitting the threshold.
- Return type: